Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 54(1): 71-87, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31972071

RESUMO

BACKGROUND/AIMS: Diabetes type 2, metabolic syndrome or non-alcoholic fatty liver disease are insulin resistance-related metabolic disorders, which lack a better prognosis before their full establishment. We studied the importance of the intracellular scaffold protein integrin linked kinaes (ILK) as a key modulator in the initial pathogenesis and the early progression of those insulin resistance- related disorders. METHODS: Adult mice with a global transgenic downregulation of ILK expression (cKD-ILK) and littermates without that depletion (CT) were fed with either standard (STD) or high fat (HFD) diets during 2 and 6 weeks. Weights, blood glucose and other systemic biochemical parameters were determined in animals under fasting conditions and after glucose or pyruvate intraperitoneal injections to test their tolerance. In RNA or proteins extracted from insulin-sensitive tissues, we determined by reverse transcription-quantitative PCR and western blot the expression of ILK, metabolites transporters and other metabolism and inflammatory markers. Glucose uptake capacity was studied in freshly isolated tissues. RESULTS: HFD feeding was able to early and progressively increase glycaemia, insulinemia, circulating glycerol, body weight gain, liver-mediated gluconeogenesis along this time lapse, but cKD-ILK have all these systemic misbalances exacerbated compared to CT in the same HFD time lapse. Interestingly, the tisular expression of ILK in HFD-fed CT was dramatically downregulated in white adipose tissue (WAT), skeletal muscle and liver at the same extent of the original ILK downregulation of cKD-ILK. We previously published that basal STD-fed cKD-ILK compared to basal STD-CT have different expression of glucose transporters GLUT4 in WAT and skeletal muscle. In the same STD-fed cKD-ILK, we observed here the increased expressions of hepatic GLUT2 and WAT pro-inflammatory cytokines TNF-α and MCP-1. The administration of HFD exacerbated the expression changes in cKD-ILK of these and other markers related to the imbalanced metabolism observed, such as WAT lipolysis (HSL), hepatic gluconeogenesis (PCK-1) and glycerol transport (AQP9). CONCLUSION: ILK expression may be taken as a predictive determinant of metabolic disorders establishment, because its downregulation seems to correlate with the early imbalance of glucose and glycerol transport and the subsequent loss of systemic homeostasis of these metabolites.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Doenças Metabólicas/etiologia , Proteínas Serina-Treonina Quinases/genética , Animais , Feminino , Gluconeogênese , Inflamação/etiologia , Inflamação/genética , Resistência à Insulina , Lipólise , Masculino , Doenças Metabólicas/genética , Camundongos , Camundongos Endogâmicos BALB C
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1284-1297, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726718

RESUMO

Kidney fibrosis is one of the main pathological findings of progressive chronic kidney disease (CKD) although the pathogenesis of renal scar formation remains incompletely explained. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix (ECM) and intracellular signaling pathways, is involved in several pathophysiological processes during renal damage. However, ILK contribution in the CKD progress remains to be fully elucidated. In the present work, we studied 1) the renal functional and structural consequences of CKD genesis and progression when ILK is depleted and 2) the potential of ILK depletion as a therapeutic approach to delay CKD progression. We induced an experimental CKD model, based on an adenine-supplemented diet on adult wild-type (WT) and ILK-depleted mice, with a tubulointerstitial damage profile resembling that is observed in human CKD. The adenine diet induced in WT mice a progressive increase in plasma creatinine and urea concentrations. In the renal cortex it was also observed tubular damage, interstitial fibrosis and progressive increased ECM components, pro-inflammatory and chemo-attractant cytokines, EMT markers and TGF-ß1 expressions. These observations were highly correlated to a simultaneous increase of ILK expression and activity. In adenine-fed transgenic ILK-depleted mice, all these changes were prevented. Additionally, we evaluated the potential role of ILK depletion to be applied after the disease induction, as an effective approach to interventions in human CKD subjects. In this scenario, two weeks after the establishment of adenine-induced CKD, ILK was abrogated in WT mice and stabilized renal damage, avoiding CKD progression. We propose ILK to be a potential target to delay renal disease progression.


Assuntos
Adenina/administração & dosagem , Técnicas de Silenciamento de Genes , Túbulos Renais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Insuficiência Renal Crônica/genética , Actinas/genética , Actinas/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Creatinina/sangue , Dieta , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Ureia/sangue
3.
Nefrología (Madrid) ; 38(6): 639-646, nov.-dic. 2018. tab, ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-178394

RESUMO

ANTECEDENTES: Los pacientes con enfermedad renal crónica presentan una acumulación de toxinas urémicas, las cuales han sido identificadas como agentes patogénicos asociados con la mortalidad cardiovascular, muy elevada en este grupo de enfermos. Un fenómeno común a la disfunción renal progresiva y al daño vascular asociado es la acumulación anormal de proteínas de la matriz extracelular (MEC) en las estructuras renales o vasculares. OBJETIVO: Estudiar la contribución de la uremia o las toxinas urémicas a la producción de citocinas y MEC en aortas de animales urémicos o células de músculo liso de aorta humana (HAOSMC). MATERIALES Y MÉTODOS: Se utilizaron ratones con uremia inducida por una dieta rica en adenina (0,2%) durante 2, 4 o 6 semanas. Se evaluó la función renal mediante la diuresis, los niveles plasmáticos de creatinina y nitrógeno ureico plasmático, y la excreción fraccional de sodio y el daño vascular mediante histología y expresión proteica por RT-qPCR. In vitro, las HAOSMC se incubaron con toxinas urémicas: p-cresol 10-100 (μg/ml) e indoxil-sulfato 25-100 (μg/ml), solas o simultáneamente. La expresión proteica se evaluó por Western blot y microscopia confocal. RESULTADOS: La administración de adenina produjo un progresivo daño renal en los ratones, un engrosamiento de la pared aórtica y un incremento de la expresión de TGF-Beta1 y proteínas de MEC. Las toxinas a dosis altas y combinadas también indujeron expresión de TGF-Beta1 y proteínas de MEC por las células HAOSMC. CONCLUSIONES: La uremia producida por una dieta rica en adenina o las dosis altas de toxinas urémicas indujeron el depósito anormal de proteínas de MEC en las paredes vasculares o su producción por HAOSMC. La comprensión de los mecanismos que subyacen a este proceso fisiopatológico puede resultar de utilidad en la prevención del daño cardiovascular asociado a la progresión de la enfermedad renal crónica, una dolencia, de momento, irreversible y, en ocasiones, silenciosa hasta su diagnóstico en etapas avanzadas


BACKGROUND: Patients with chronic kidney disease present with an accumulation of uraemic toxins, which have been identified as pathogenic agents associated with cardiovascular mortality, which is very high is this patient group. A phenomenon common to the progressive renal dysfunction and associated vascular damage, is the abnormal accumulation of extracellular matrix (ECM) proteins in the renal or vascular structures. OBJECTIVE: To determine the contribution of uraemia or the uraemic toxins to the production of cytokinins and ECM in aortas of uraemic animals or human aortic smooth muscle cells (HASMCs). MATERIALS AND METHODS: Mice were used with uraemia induced by a diet rich in adenine (0.2%) for 2, 4 or 6 weeks. Kidney function was evaluated by means of urine volume, plasma levels of creatinine, urea, fractional excretion of sodium, and vascular damage using histology, as well as protein expression using RT-qPCR. The HASMCs were incubated in vitro with uraemic toxins: p-cresol 10-100 (Mig/ml) and indoxyl-sulphate 25-100 (Mig/ml) alone or simultaneously. The protein expression was evaluated using Western blot and confocal microscopy. RESULTS: The administration of adenine produced progressive kidney damage in the mice, thickening of the aortic wall, and increasing the expression of TGF-Beta1 and ECM proteins. The toxins at high doses and combined also induced the expression of TGF-Beta1 and ECM proteins by the HASMCs. CONCLUSIONS: The uraemia produced by an adenine rich diet or high doses of uraemic toxins induced the abnormal deposit of ECM proteins in the vascular wall or its production by HASMCs. The understanding of the mechanisms that underlie this pathophysiological process may be useful in the prevention of cardiovascular damage associated with the progress of chronic kidney disease, a disease, at the moment that is irreversible and occasional silent until its diagnosis in advanced stages


Assuntos
Animais , Masculino , Camundongos , Insuficiência Renal Crônica/metabolismo , Toxinas Biológicas/metabolismo , Uremia/complicações , Insuficiência Renal Crônica/sangue , Fibrose/sangue , Fibrose/etiologia , Doenças Vasculares/sangue , Doenças Vasculares/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Nefrologia (Engl Ed) ; 38(6): 639-646, 2018.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-30337107

RESUMO

BACKGROUND: Patients with chronic kidney disease present with an accumulation of uraemic toxins, which have been identified as pathogenic agents associated with cardiovascular mortality, which is very high is this patient group. A phenomenon common to the progressive renal dysfunction and associated vascular damage, is the abnormal accumulation of extracellular matrix (ECM) proteins in the renal or vascular structures. OBJECTIVE: To determine the contribution of uraemia or the uraemic toxins to the production of cytokinins and ECM in aortas of uraemic animals or human aortic smooth muscle cells (HASMCs). MATERIALS AND METHODS: Mice were used with uraemia induced by a diet rich in adenine (0.2%) for 2, 4 or 6 weeks. Kidney function was evaluated by means of urine volume, plasma levels of creatinine, urea, fractional excretion of sodium, and vascular damage using histology, as well as protein expression using RT-qPCR. The HASMCs were incubated in vitro with uraemic toxins: p-cresol 10-100 (µg/ml) and indoxyl-sulphate25-100 (µg/ml) alone or simultaneously. The protein expression was evaluated using Western blot and confocal microscopy. RESULTS: The administration of adenine produced progressive kidney damage in the mice, thickening of the aortic wall, and increasing the expression of TGF-ß1 and ECM proteins. The toxins at high doses and combined also induced the expression of TGF-ß1 and ECM proteins by the HASMCs. CONCLUSIONS: The uraemia produced by an adenine rich diet or high doses of uraemic toxins induced the abnormal deposit of ECM proteins in the vascular wall or its production by HASMCs. The understanding of the mechanisms that underlie this pathophysiological process may be useful in the prevention of cardiovascular damage associated with the progress of chronic kidney disease, a disease, at the moment that is irreversible and occasional silent until its diagnosis in advanced stages.


Assuntos
Vasos Sanguíneos/patologia , Citocinas/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Insuficiência Renal Crônica/complicações , Uremia/complicações , Adenina/administração & dosagem , Animais , Fibrose/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Toxinas Biológicas/fisiologia , Fator de Crescimento Transformador beta1/fisiologia
5.
Biochim Biophys Acta Gene Regul Mech ; 1860(9): 922-935, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28736155

RESUMO

Two processes are associated with progressive loss of renal function: 1) decreased aquaporin-2 (AQP2) expression and urinary concentrating capacity (Nephrogenic Diabetes Insipidus, NDI); and 2) changes in extracellular matrix (ECM) composition, e.g. increased collagen I (Col I) deposition, characteristic of tubule-interstitial fibrosis. AQP2 expression is regulated by both the ECM-to-intracellular scaffold protein integrin-linked kinase (ILK) by NFATc/AP1 and other transcription factors. In the present work, we used in vivo and in vitro approaches to examine ILK participation in NFATc3/AP-1-mediated increases in AQP2 gene expression. Both NFATc3 knock-out mice and ILK conditional-knockdown mice (cKD-ILK) display symptoms of NDI (polyuria and reduced AQP2 expression). NFATc3 is upregulated in the renal medulla tubular cells of cKD-ILK mice but with reduced nuclear localization. Inner medullary collecting duct mIMCD3 cells were subjected to ILK depletion and transfected with reporter plasmids. Pharmacological activators or inhibitors determined the effect of ILK activity on NFATc/AP-1-dependent increases in transcription of AQP2. Finally, mIMCD3 cultured on Col I showed reduced activity of the ILK/GSK3ß/NFATc/AQP2 axis, suggesting this pathway is a potential target for therapeutic treatment of NDI.


Assuntos
Aquaporina 2/genética , Fatores de Transcrição NFATC/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica/genética , Animais , Linhagem Celular , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Integrinas/metabolismo , Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poliúria/genética , Poliúria/metabolismo , Fator de Transcrição AP-1/metabolismo
6.
J Endocrinol ; 234(2): 115-128, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28490443

RESUMO

The development of insulin resistance is characterized by the impairment of glucose uptake mediated by glucose transporter 4 (GLUT4). Extracellular matrix changes are induced when the metabolic dysregulation is sustained. The present work was devoted to analyze the possible link between the extracellular-to-intracellular mediator integrin-linked kinase (ILK) and the peripheral tissue modification that leads to glucose homeostasis impairment. Mice with general depletion of ILK in adulthood (cKD-ILK) maintained in a chow diet exhibited increased glycemia and insulinemia concurrently with a reduction of the expression and membrane presence of GLUT4 in the insulin-sensitive peripheral tissues compared with their wild-type littermates (WT). Tolerance tests and insulin sensitivity indexes confirmed the insulin resistance in cKD-ILK, suggesting a similar stage to prediabetes in humans. Under randomly fed conditions, no differences between cKD-ILK and WT were observed in the expression of insulin receptor (IR-B) and its substrate IRS-1 expressions. The IR-B isoform phosphorylated at tyrosines 1150/1151 was increased, but the AKT phosphorylation in serine 473 was reduced in cKD-ILK tissues. Similarly, ILK-blocked myotubes reduced their GLUT4 promoter activity and GLUT4 expression levels. On the other hand, the glucose uptake capacity in response to exogenous insulin was impaired when ILK was blocked in vivo and in vitro, although IR/IRS/AKT phosphorylation states were increased but not different between groups. We conclude that ILK depletion modifies the transcription of GLUT4, which results in reduced peripheral insulin sensitivity and glucose uptake, suggesting ILK as a molecular target and a prognostic biomarker of insulin resistance.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Homeostase/fisiologia , Hiperglicemia , Hiperinsulinismo , Insulina/sangue , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Serina-Treonina Quinases/genética
7.
Mol Med ; 21(1): 873-885, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26562149

RESUMO

Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis-related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...